2018/09/09 更新在這裡, 本篇留存參考
以前看到電視的股票分析師在電視上報股票, 老是遮遮掩掩的, 那時就用MFC寫程式從yahoo抓資料, 找出分析說的是那隻, 研判是要炒作還是出貨, 後來也寫過群益API的期貨交易程式. 程式功能要全部自己來, 要花很多時間. 近來python很紅, 不是語言本身很強, 而是有太多已經ready的package可用, 現在甚至在連手機上都已經可以寫python了, 想想以後未必會在windows上做這件事,所以想轉換到python上, 逐步建立自己的工具程式. 第一步當然是先抓到股名代碼名稱, 這從證券交易所抓每日收盤行情就可以了. 因為yahoo有提供全世界股票的資料, 如果要抓個股, 從yahoo抓比較方便, 就不用每天抓收盤行情存資料庫了
先弄個抓取每日收盤行情的程式, 以後再慢慢變化
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import csv
import numpy as np
import datetime as dt
import pandas as pd
from datetime import timedelta
import httplib2
from urllib.parse import urlencode
def twdate(date):
year = date.year-1911
month = date.month
day = date.day
twday = '{}/{:02}/{:02}'.format(year,month,day)
return twday
def downloadTWSE(date):
url="http://www.twse.com.tw/ch/trading/exchange/MI_INDEX/MI_INDEX.php"
values = {'download' : 'csv', 'qdate' : twdate(date), 'selectType' : 'ALLBUT0999' }
agent = 'Mozilla/5.0 (Windows NT 6.3; WOW64; rv:34.0) Gecko/20100101 Firefox/34.0'
#httplib2.debuglevel = 1
conn = httplib2.Http('.cache')
headers = {'Content-type': 'application/x-www-form-urlencoded',
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
'User-Agent': agent}
resp, content = conn.request(url, 'POST', urlencode(values), headers)
respStr = str(content.decode('cp950'));
return respStr
def downloadOTC(date):
url='http://www.tpex.org.tw/web/stock/aftertrading/otc_quotes_no1430/stk_wn1430_print.php?l=zh-tw&d='+twdate(date)+'&se=EW'
table = pd.read_html(url)[0]
rowCount = table.values.shape[0]-1;
return table.values[:rowCount]
def showStock(stockID, stockName, Open, High, Low, Close,Volume):
showLen=8
print('\nTWSE count=',len(stockID))
print('ID:',stockID[:showLen])
print('Name:',stockName[:showLen])
print('Open:',Open[:showLen])
print('High:',High[:showLen])
print('Low:',Low[:showLen])
print('Close:',Close[:showLen])
print('Volume:',Volume[:showLen])
#main
downloadDate= dt.date.today() #- timedelta(days=1)
# download TWSE
strCSV = downloadTWSE(downloadDate)
srcCSV = list(csv.reader(strCSV.split('\n'), delimiter=','))
#search stock list
firstIndex=0
lastIndex=0
for i in range(len(srcCSV)):
row = srcCSV[i]
if (len(row)>15): #16 columns
row[0]=row[0].strip(' =\"')
row[1]=row[1].strip(' =\"')
if (row[0]=="0050"):
firstIndex=i
elif (row[0]=="9958"):
lastIndex=i+1
break
#get result
result = np.array(srcCSV[firstIndex:lastIndex])
stockID=result[:,0]
stockName=result[:,1]
Open=result[:,5]
High=result[:,6]
Low=result[:,7]
Close=result[:,8]
Volume=result[:,2]
print('\nTWSE count=',len(stockID))
showStock(stockID, stockName, Open, High, Low, Close,Volume)
#download OTC
result = np.array(downloadOTC(downloadDate))
stockID=result[:,0]
stockName=result[:,1]
Open=result[:,4]
High=result[:,5]
Low=result[:,6]
Close=result[:,2]
Volume=result[:,7]
print('\nOTC count=',len(stockID))
showStock(stockID, stockName, Open, High, Low, Close,Volume)
|
全站熱搜
留言列表